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Chapter 1
Introduction

Circular arc helical gears were proposed by Wildhaber and Novikov. However, there is a significant difference
between the ideas proposed by the previously mentioned inventors. Wildhaber’s idea (ref. 1) is based on generation
of the pinion and gear by the same imaginary rack-cutter that provides conjugate gear tooth surfaces that are in line
contact at every instant. Novikov (ref. 2) proposed the application of two mismatched imaginary rack-cutters that
provide conjugated gear tooth surfaces that are in point contact at every instant. This allowed us to overcome the
restriction caused by the relation between the curvatures of surfaces that are in line contact and to obtain a small
value of the relative normal curvature of the contacting surfaces. Novikov’s approach enables us to reduce the con-
tact stresses.

The weak point of Novikov’s idea was the high value of bending stresses caused by the instantaneous point
contact of gear tooth surfaces. This disadvantage could be overcome by the development of double circular-arc heli-
cal gears with two zones of meshing. The geometry of Novikov helical gears was considered in references 3 to 8.

The content of this report covers the following main topics:

(1) The geometry of double circular-arc helical pinion and gear applied in external and internal gear drives
(2) New methods for generation of the aforementioned gear drives with a low level of transmission errors
(3) Methods of grinding of double circular-arc pinion and gear
(4) Computerized simulation of meshing and contact of the previously discussed gear drives

Computer programs for numerical computation were developed for all stages of investigation. The results of
computation confirm that the transmission errors of Novikov’s helical gears are impermissibly high and the function
of transmission errors is a discontinuous one. The results of computation confirm as well that the proposed modifi-
cation of surfaces and methods for generation allows us to reduce the level of transmission errors in two times and
substitute the discontinuous function of transmission errors by the continuous one of a parabolic type.
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Chapter 2
Basic Principles of Generation of Double
Circular-Arc Helical Gears
2.1 Generation of External Gears

2.1.1 Principle of Generation

The imaginary process for external gear generation is based on the following ideas:

(1) Two imaginary rack-cutters with cylindrical surfaces ΣP and ΣF are rigidly connected each to other as
shown in figure 1(a). Surfaces ΣP and ΣF are in tangency along two straight lines, a – a and b – b.

(2) The rack-cutters perform translational motion with velocity v while the pinion and gear being generated
perform rotational motions about their axes, O1 and O2, with angular velocities ω(1) and ω(2) (fig. 1(b)). The axodes
of the gears are cylinders of radii r1 and r2, where ri = υ/ω(i) (i = 1, 2). Both rack-cutters have the same axode, that
is, plane  II (fig. 1(a)).

(3) The rack-cutter surface ΣP generates the pinion tooth surface Σ1 only, and the rack-cutter surface ΣF gener-
ates only the gear tooth surface Σ2. Surface Σ1 is the envelope to the family of rack-cutter surfaces ΣP that are repre-
sented in coordinate system S1. Similarly, surface Σ2 is the envelope to the family of rack-cutter surfaces ΣF that are
represented in coordinate system S2.

(4) We may consider four surfaces (ΣP, Σ1, ΣF and Σ2) that are in mesh simultaneously. Surfaces ΣP and Σ1 are
in contact along two lines at every instant. Similarly, surfaces ΣF and Σ2 are in contact at two lines at every instant
as well.

υ

(b)

ω(1)

ω(2)

r1 O1

O2

r2

II

I

a

a

b

b

υ
ΣF

ΣP

(a)

II

Figure 1.—Axodes and generating surfaces. (a) Rack-cutter surfaces and axode plane. (b) Cross sections 
   of gear axodes.
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Figure 2(a) shows two families of contact lines L(a)
P1

 and L(b)
P1

 (the upper and the lower ones) on the rack-cutter

surface ΣP that exist when surface ΣP generates surface Σ1. Lines a – a and b – b are the lines of tangency of rack-

cutter surfaces ΣP and ΣF. Obviously, contact lines L(a)
P1

 and L(b)
P1

 intersect lines a – a and b – b, respectively. Simi-

larly, we may represent two families of contact lines L(a)
F2

 and L(b)
F2

 on rack-cutter surface ΣF (fig. 2(b)).

Considering the meshing of generated gear tooth surfaces Σ1 and Σ2, we recognize immediately that these sur-
faces are in point contact at every instant. There are two contact points at every instant, the upper and lower points
of contact in an ideal gear train. The instantaneous upper point of contact of Σ1 and Σ2, M

(a), is the point of intersec-

tion of L(a)
P1

 with a – a (fig. 3(a)). The lower instantaneous point of contact of Σ1 and Σ2, M
(b), is the point of inter-

section of L(b)
P1

 with b – b. Obviously, M(a) may be considered as well as the instantaneous point of intersection of

L(a)
F2

 with a – a (fig. 3(b)); M(b) is the instantaneous point of intersection of L(a)
F2

 with b – b.
The path of contact on surface Σi (i = 1, 2) is the set of points of Σi where Σ1 and Σ2 contact each other. Such a

path of contact is a helix, and the contact point moves in the process of meshing along the helix on Σi (fig. 3). There
are two paths of contact on surface Σi, the upper and the lower ones.

The line of action is the set of contact points in the fixed coordinate system rigidly connected to the housing of
the train. The line of action is a straight line that is parallel to the gear axes. There are two lines of action, the upper
and the lower ones.

a
a

b
b

ΣF

(b)

(a)

LF2
(a)

LF2
(b)

a
a

b
b

ΣP

LP1
(a)

LP1
(b)

Figure 2.—Contact lines on generating surface.
   (a) Rack-cutter P. (b) Rack-cutter F.

Σ2

Σ1

(b)

(a)

M(b)

M(b)

M(a)

M(a)

Figure 3.—Paths of contact and contact ellipses on 
   pinion-gear tooth surfaces. (a) On pinion tooth 
   surface. (b) On gear tooth surface.

Contact paths

Contact paths
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2.1.2 Geometry of Rack-Cutter

Normal Section of Rack-Cutter

The normal sections of the rack-cutters are represented in figure 4. The profile of the basic tooth of the rack-
cutter in the normal section is symmetric about ya; the next tooth can be obtained by the displacement on the circular
pitch pn of the basic tooth along axis xa. Each side of the basic tooth in the normal section consists of three circular
arcs. The circular arcs of rack-cutter P are represented in Sa

(P) by the equations

x x

y y

z

a
P

P P oP

a
P

P P oP

a
P

( )

( )

( )

cos

sin ( . . )

= +
= +
=









ρ θ
ρ θ
0

2 1 1

Here, ρP is the radius of circular arc; (xoP, yoP) are the arc center coordinates; θP is the variable parameter (subscript
P = a,f,g) (fig. 4). Circular arcs a and f generate the working surfaces of the pinion, and g generates the fillet surface.

The mating rack-cutter F has the same three circular arcs as those of the rack-cutter P that can be represented in
coordinate system Sa

(F) by using the following equations of coordinate transformation:

x x
p

y y

z

a
F

a
P n

a
F

a
P

a
F

( ) ( )

( ) ( )

( )

( . . )

= − +

= −

=














2

0

2 1 2

where pn = πm.
The general description in Sa

(t) of all circular arcs for both rack-cutters is as follows:

x x

y y

z

a
t

t t ot

a
t

t t ot

a
P

( )

( )

( )

cos

sin ( . . )

= +
= +
=









ρ θ
ρ θ
0

2 1 3

where t = F,P.

(a)

θf

θa

θg ρf

ρa

ρg

Oa
(P)

ya
(P)

xa
(P)

Of

Oa

Og

pn/2

(b)

θf

θa

θgρf

ρa

ρg

ya
(F)

xa
(F)Of

Oa
(F)Oa

Og

pn/2

Figure 4.—Derivation of normal section of rack-cutters. (a) Rack-cutter P. (b) Rack-cutter F.
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Tooth Surface of Rack-Cutter

We consider that the normal section of the tooth of the rack-cutter is represented in coordinate system Sa by
equations (2.1.3). Our next goal is to represent the surface of the rack-cutter tooth in the three-dimensional space
defined by coordinate system St (fig. 5). The derivations of such a surface are based on the following considerations:

(1) Coordinate system Sa
(t) with the normal section of the rack-cutter performs a translational motion along the

straight line O mt  (fig. 5).

(2) Straight line O mt  is located in plane II that is tangent to the gear axodes and forms angle β with the zt-axis

that is parallel to the gear axis.
(3) The current location of the origin Oa

(t) in coordinate system St is determined by the variable parameter

ut = O Ot a
t( ) .

(4) The surface of the rack-cutter tooth is determined in St by the matrix equation

r M rt ta a
t= ( ) ( . . )2 1 4

where (fig. 5)

Mta

t

t

u

u
=

− −

















cos sin sin

sin cos cos
( . . )

β β β

β β β

0

0 1 0 0

0
2 1 5

0 0 0 1

After derivations we obtain the following equations of the rack-cutter surfaces:

rt t t

t t ot t

t t ot

t t ot t

u

x u

y

x u

θ
ρ θ β β

ρ θ
ρ θ β β

,

cos cos sin

sin

cos sin cos

( . . )( ) =
+( ) −

+
+( ) +

















2 1 6

where t = F,P and the surface parameters are ut and θt.

β

β

xa
(t)

Oa
(t)

za
(t)

ya
(t)

xt

ut

yt

Ot

ztm

II

Figure 5.—Derivation of rack-cutter surface.
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Normal to Rack-Cutter Surface

The unit normal to the rack-cutter surface is represented as

n
N
N

N
r r

t
t

t
t

t

t

t

tu
= = ×,      ( . . )

∂
∂θ

∂
∂

2 1 7

Thus

nt

t

t

t

=
















cos cos

sin

cos sin

( . . )

θ β
θ

θ β
2 1 8

Equations (2.1.6) and (2.1.8) must be derived four times to represent the upper and lower parts of the working
surfaces of two rack-cutters that generate the pinion and the gear, respectively.

2.1.3 Equation of Meshing Between Rack-Cutter and Gear Surfaces

Applied Coordinate Systems

Movable coordinate systems St, S1, and S2 are rigidly connected to the tool (the rack-cutter), the pinion, and the
gear, respectively. A fixed coordinate system Sm is rigidly connected to the frame of the cutting machine (fig. 6).

Equation of Meshing

The equation of meshing between surface Σt (t = F, P) of the rack-cutter and the gear tooth surface Σi (i = 1, 2)
must be represented as

f ut t i, , ( . . )θ φ( ) = 0 2 1 9

where φi is the angle of rotation of the gear in the process for generation. The derivation is based on the theorem that
the common normal to Σt and Σi must pass through the instantaneous axis of rotation. Thus, we have

X x

n

Y y

n

Z z

n
t t

xt

t t

yt

t t

zt

− = − = −
( . . )2 1 10

Here (fig. 6)

X s r

Y

Z l

t i i i

t

t

= =
=

≤ ≤








φ
0 2 1 11

0

( . . )

where t = P while i = 1, and t = F while i = 2.
Equations (2.1.10), (2.1.11), (2.1.6), and (2.1.8) yield

f u r u x yt t t i i t ot t ot t, , sin cos sin cos cos ( . . )θ φ φ β β θ θ β( ) = + −( ) + = 0 2 1 12



NASA CR–4771       8

2.2 Geometry of External Gears

Geometry of Gear Tooth Surface ΣΣΣΣΣ2

The generated surface Σ2 (the gear tooth surface) is represented by the family of lines of contact between the
rack-cutter surface and the surface of the gear being generated. Analytically, surface Σ2 is represented in S2 (fig. 6)
by the equations

r M M r2 2 0 2 2 1u f uF F m mF F F F, , ,      , , ( . . )θ φ θ φ2 2( ) = ( ) =

Here

M2

2 2

2 2

0 0

0 0

0 0 1 0

0 0 0 1

2 2 2m =
−



















cos sin

sin cos
( . . )

φ φ
φ φ

β

φ1

O1

II

β

II

I

I

yp

zP

xP

xm
Om

Op

I

I

Of

zm

ym

y1

x1

r1

z1

s1 = r1φ1

yF

zF

r2

x2

y2

xF

xm
Om, O2

zm, z2

ym

s2 = r2φ2

φ2

(a)

(a)

(b)

Figure 6.—Derivation of coordinate transformation. (a) For pinion generation. 
   (b) For gear generation.
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MmF =

−

















1 0 0

0 1 0

0 0 1 0

0 0 0 1

2 2 3

2 2

2

r

r

φ

( . . )

Equations (2.2.1) represent surface Σ2 in three-parameter form but the parameters are related by the equation of
meshing (2.1.12). If we take into account that uF is a linear parameter in the equation of meshing, it can be elimi-
nated and surface Σ2 can be represented in two-parameter form, in terms of parameters θF and φ2. Thus,

x A B

y A B

z E D

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 4

= +
= −
= −( )









sin cos

cos sin

tan

( . . )

φ φ
φ φ

φ β

Here

A y r

B y

D r

E
x

y

F F oF

F F oF F

2 F F
oF

oF F

2 2

2

2 2
2

2

2 2 5

= + +
= +( )
=

= + −













ρ θ
ρ θ θ β

β

ρ θ β
β

β θ β β

sin

sin cot cos

cot

cos cos
sin

cot cot cos cot

( . . )

The unit normal to the gear tooth surface is

n L L n2 2 2 2

2 2

2 2 2 2 6θ φ φ θ
θ β φ θ φ
θ β φ θ φ

θ β
F m mF F F

F F

F F

F

,

cos cos cos sin sin

cos cos sin sin cos

cos sin

( . . )( ) = ( ) ( ) =
+

− +
















where

L2 2

2 2

2 2

0

0

0 0 1

2 2 7m φ
φ φ
φ φ( ) = −

















cos sin

sin cos ( . . )

LmF =
















1 0 0

0 1 0

0 0 1

2 2 8( . . )

and nF(θF) is represented by equation (2.1.8).
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Geometry of Pinion Tooth Surface ΣΣΣΣΣ1

Surface Σ1 is generated by rack-cutter tooth surface ΣP and is represented in S1 (fig. 6) as follows:

r M M r1 1 0 2 2 9u f uP P m mP P P, , ,      , , ( . . )θ φ θ φ1 1( ) = ( ) =P

Here

M1

1 1 1 2 1

1 1 1 2 1

0

0

0 0 1 0

0 0 0 1

2 2 10m

r r

r r
=

− +( )
− +( )





















cos sin sin

sin cos cos
( . . )

φ φ φ
φ φ φ

MmP =

−

















1 0 0

0 1 0

0 0 1 0

0 0 0 1

2 2 11

1 1

2

r

r

φ

( . . )

After elimination of the variable uP, we represent Σ1 in terms of θP and φ1 by the following equations:

x A B

y A B

z E D

1 1 1 1 1

1 1 1 1 1

1 1 1 1

2 2 12

= − +
= +
= −( )









sin cos

cos sin

tan

( . . )

φ φ
φ φ

φ β

Here

A y r

B y

D r

E
x

y

P P oP

P P oP P

P P
oP

oP P

1 1

1

1 1
2

2

2 2 13

= + −
= +( )
=

= + −













ρ θ
ρ θ θ β

β

ρ θ β
β

β θ β β

sin

cos cot cos

cot

cos cos
sin

cot cot cos cot

( . . )

1

The unit normal to the pinion tooth surface is

n2 1 1 1

1 1

1 1 2 2 14θ φ φ θ
θ β φ θ φ
θ β φ θ φ

θ β
P m mP P P

P P

P P

P

,

cos cos cos sin sin

cos cos sin sin cos

cos sin

( . . )( ) = ( ) ( ) =
−
+

















L L n

where

L1 1

1 1

1 1

0

0

0 0 1

2 2 15m φ
φ φ
φ φ( ) =

−















cos sin

sin cos ( . . )
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LmP =
















1 0 0

0 1 0

0 0 1

2 2 16( . . )

and nP(θP) is represented by equation (2.1.8).
Figure 7 shows the external gear drive in the transverse section. The gear is a right-hand helical gear, and the

pinion is a left-hand helical gear.

2.3 Generation of Internal Gears

An internal gear drive of double circular-arc helical gears is composed of an internal gear and an external pin-
ion. The generation of the internal gear tooth surface is based on the following considerations:

(1) The generation of the external gear is performed by an imaginary rack-cutter F that is shown as figure 8(a).
The process of the external gear generation has been mentioned in Section 2.1.

Figure 7.—Transverse section of external gear drive.

(a)
External gear

Rack-cutter F

(b)

Internal gear

Figure 8.—Double circular-arc internal gear. (a) Generation performed by imaginary rack-cutter F. (b) Tooth 
   surface of internal gear.
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(2) The gear tooth surface generated by rack-cutter F is represented by equations (2.2.4) and (2.2.5).
(3) We consider the gear tooth surface represented by equation (2.2.4) as the tooth surface of an internal gear

(fig. 8(b)).
(4) Such a gear tooth surface of the internal gear can be generated by a disk-cutter Σd (see Section 4).

2.4 Geometry of Internal Gears

Imaginary Rack-Cutters

In the derivation of tooth surface equations for an internal gear drive, we still use the imaginary rack-cutters Σt
(t = F, P) represented by equations (2.1.6) and (2.1.8).

Applied Coordinate Systems

Movable coordinate systems St , S1, and S2 are rigidly connected to the tool (the rack-cutter), the pinion, and the
gear, respectively. A fixed coordinate system Sm is rigidly connected to the frame of the cutting machine (fig. 9).
The original point Om of the coordinate system Sm coincides with O2 in the process of derivation of the gear tooth
surface and coincides with O1 in the derivation of the pinion tooth surface.

Equation of Meshing

The equation of meshing between surface Σt (t = F, P) of rack-cutter and the internal gear (external pinion)
tooth surface Σi (i = 1,2) is represented as equation (2.1.12).

Equations of Gear (Pinion) Tooth Surface

The generated surface Σi (the pinion or the gear surface) is represented by the family of lines of contact between
the rack-cutter surface and the surface of the pinion (gear) being generated. Both the pinion and the gear are the
same hand helical gears since the gear is an internal gear. The tooth surface Σi generated by the rack-cutter tooth
surface Σt can be represented in respective coordinate system Si (i = 1,2) by the following equations (fig. 9):

r M M ri t t i im mt t t t t t iu u f u, , , , ,      , , ( . . )θ φ θ θ φ( ) = ( ) ( ) = 0 2 4 1

The unit normal to the tooth surface is represented as follows:

n L L ni t i im mt t tθ φ θ, ( . . )( ) = ( ) 2 4 2

Here, i = 1 when t = P, i = 2 when t = F, and

Mim

i i

i i=
−



















cos sin

sin cos
( . . )

φ φ
φ φ

0 0

0 0

0 0 1 0

0 0 0 1

2 4 3

Mmt

i

i=

−

















1 0 0

0 1 0

0 0 1 0

0 0 0 1

2 4 4

s

r
( . . )
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Lim

i i

i i= −
















cos sin

sin cos ( . . )

φ φ
φ φ

0

0

0 0 1

2 4 5

Lmt =
















1 0 0

0 1 0

0 0 1

2 4 6( . . )

Equations (2.4.1) represent surface Σi in three-parameter form but the parameters are related by the equation of
meshing. If it is taken into account that ut is a linear parameter in the equation of meshing, it can be eliminated and
surface Σi can be represented in two-parameter form by parameters θt , φi. Equations (2.4.1), (2.4.3), (2.4.4), (2.1.6),
and (2.1.12) yield

x A B

y A B

z E D

i i i i i

i i i i i

i i i i

= +
= −
= −( )









sin cos

cos sin

tan

( . . )

φ φ
φ φ

φ β
2 4 7

φ1

φ2
r2 – r1

yt

Ot

O1, Om

O2, Om

ym

xt

xm

xm

x2

x1
y2 y1

si

r2

r1

Figure 9.—Derivation of coordinate transformation.
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Here

A y r

B y

D r

E
x

y

i t t ot i

i t t ot t

i i

i t t
ot

ot t

= + +
= +( )
=

= + −













ρ θ
ρ θ θ β

β

ρ θ β β
β

θ β β

sin

cos cot cos

cot

cos cos
cot

sin
cot cos cot

( . . )2

2

2 4 8

Equations (2.4.2), (2.4.5), (2.4.6), and (2.1.8) yield

ni t i

t i t i

t i t i

t

θ φ
θ β φ θ φ
θ β φ θ φ

θ β
,

cos cos cos sin sin

cos cos sin sin cos

cos sin

( . . )( ) =
+

− +
















2 4 9

Figure 10 shows the internal gear drive in the transverse section.

Figure 10.—Transverse section of internal gear drive.
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Chapter 3
Computerized Simulation of Meshing for
Double Circular-Arc Helical Gears
3.1 Computerized Simulation of Meshing and Contact

Computerized simulation of meshing is applied to discover the influence of misalignment on the shift of the
bearing contact and transmission errors. The misalignment of the gear drive is simulated by the errors of installation
and orientation of gear 2 with respect to pinion 1.

Applied Coordinate Systems

Coordinate systems S1, S2, and Sf are rigidly connected to the pinion, the gear, and the frame of the gear drive,
respectively. To simulate the misalignment of the gear drive, we use auxiliary coordinate systems Sp and Sq. The
location of Sp and Sq with respect to Sf is shown in figure 11.

∆γy

∆γx

∆γx

ψ1

ψ1

ψ2

ψ2

Of,O2

O2,Op

Op,Oq

xq

zq

zf

Of

xf
yq

zt

x1

y1

yf

x2

xp

yqyp

zp

zq

y2
yp

E'

(a) (c)

(b)

Figure 11.—Coordinate systems applied for simulation of meshing. (a) Installment 
   of coordinate systems Sf, S, and Sq. (b) Installment of coordinate systems S2 
   and Sp. (c) Installment of coordinate systems Sp and Sq. 
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Conditions of Continuous Tangency

We represent initially the tooth surfaces and the surface unit normals in the fixed coordinate system Sf by the
following equations:

r M rf f P
( ) , ( . . )1

1 1 1 3 1 1= ( )θ φ

n L nf f P
( ) , ( . . )1

1 1 1 3 1 2= ( )θ φ

r M M M rf fq qp p F
( ) , ( . . )2

2 2 3 1 3= ( )2 θ φ

n L L L nf fq qp p F
( ) , ( . . )2

2 2 3 1 4= ( )2 θ φ

where

M f

i i

i i E
1

0 0

0

0 0 1 0

0 0 0 1

3 1 5=

±
′



















cos sin

sin cos
( . . )

ψ ψ
ψ ψm

Here

′ =
+ +
− +





E
r r E

r r E
2 1

2 1

∆
∆

,     

,     

for gear drive

for n gear drive

external

i ternal

The upper sign in matrix (3.1.5) is for the external gear drive, and the lower sign is for the internal gear drive.

L f1

1 1

1 1

0

0

0 0 1

3 1 6=
±















cos sin

sin cos ( . . )

ψ ψ
ψ ψm

Mp2

2 2

2 2

0 0

0 0

0 0 1 0

0 0 0 1

3 1 7=

−

















cos sin

sin cos
( . . )

ψ ψ
ψ ψ

Mqp
x x

x x
=

−


















1 0 0 0

0 0

0 0

0 0 0 1

3 1 8
cos sin

sin cos
( . . )

∆ ∆
∆ ∆

γ γ
γ γ
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M fq

y y

y y
=

−

















cos sin

sin cos
( . . )

∆ ∆

∆ ∆

γ γ

γ γ

0 0

0 1 0 0

0 0

0 0 0 1

3 1 9

Lp2

2 2

2 2

0

0

0 0 1

3 1 10=
−















cos sin

sin cos ( . . )

ψ ψ
ψ ψ

Lqp x x

x x

= −
















1 0 0

0

0

3 1 11cos sin

sin cos

( . . )∆ ∆
∆ ∆

γ γ
γ γ

L fq

y y

y y

=
−















cos sin

sin cos

( . . )

∆ ∆

∆ ∆

γ γ

γ γ

0

0 1 0

0

3 1 12

The gear tooth surfaces are in continuous tangency that is described by the following equations:

r rf P f F
( ) ( ), , , , ( . . )1

1 1
2

2 2 3 1 13= ( ) = = ( )θ φ ψ θ φ ψ

n nf P f F
( ) ( ), , , , ( . . )1

1 1
2

2 2 3 1 14= ( ) = = ( )θ φ ψ θ φ ψ

Here r f
(i) (θt, φi, ψi) is the position vector of the gear tooth surface in coordinate system Sf ; nf

(i) (θt, φi, ψi) is the
unit normal to the surface.

Simulation of Meshing

Equations (3.1.13) and (3.1.14) provide a system of five independent equations in six unknowns; that is,

f ii P F= ( ) = =θ φ ψ θ φ ψ, , , , , ,      ( , , ... ) ( . . )1 1 2 2 0 1 2 5 3 1 15

The surfaces are in point contact, and it is supposed that the respective Jacobian differs from zero. Thus,

D f f f f f

D P F

1 2 3 4 5

1 2 2
0

, , , ,

, , , ,

( )
( ) ≠
θ φ θ φ ψ

by assuming that ψ1 is the input parameter.
The solution of equation system (3.1.15) by the functions

θ ψ φ ψ θ ψ φ ψ ψ ψP F1 1 1 2 1 2 1( ) ( ) ( ) ( ) ( ),      ,      ,      ,      1

enables us to determine the real contact paths (the shift of the bearing contact) and the transmission errors
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∆ψ ψ ψ ψ ψ2 1 2 1
1

2
1 3 1 16( ) = ( ) − N

N
( . . )

Function ∆ψ2(ψ1) represents the errors of angular positions of gear 2. Function ∆ψ2(ψ1) – ∆ψ2(0) represents
the function of transmission errors; ∆ψ2(0) = ∆ψ2(ψ1)|ψ1=0

 is the position error of gear 2 at ψ1 = 0. The position
error ∆ψ2(0) is the angle of so-called compensating turn of gear 2 that enables us to restore the tangency of surfaces
at the initial position when ψ1 = 0. Because of misalignment, the gear tooth surfaces at the initial angular positions
when ψ1 = ψ2 = 0 intersect each other or there is a backlash between the surfaces.

3.2 Numerical Examples

3.2.1 Example 1 (External Gear Drive)

The numerical computation has been performed for an external gear drive with the following design parameters:
N1 = 12, N2 = 94, αn = 27°, Pn = 10 in.–1, β  = 30°.

Tooth Contact Analysis for Aligned Gear Drives

Contact paths on the surfaces of a single tooth are shown in figure 12. The investigation shows that two contact
points on the surface of a single tooth exist only in a small area of meshing. Two contact points of this kind are
shown as the dark ones on the paths of contact. However, if the contact ratio is two, there are two or even more than
two instantaneous contact points but they are located on the surfaces of two teeth. The ideal contact paths are helices
and called mean lines.

Change ∆∆∆∆∆E of Center Distance

Consider that the center distance is changed from E = r1 + r2 to E´ = r1 + r2 + ∆E. Since the gear axes are still
parallel, the conditions of meshing are the same as those shown in figure 12. Two instantaneous contact points on a
pair of tooth surfaces exist only in a small area of meshing. But the contact paths are shifted up or down from the
mean line and are still helices. The errors of angular position of gear 2 are the following: (1) ψ2(0) = 29.43 arcsec
when ∆E = –0.03 mm; (2) ψ2(0) = –23.65 arcsec when ∆E = 0.03 mm. The transmission errors are equal to zero.

(b)

M(a)

M(b)

M(a)

M(b)

–42° –24° –12° 12° 24° 42°

Pair 
1

Pair 
2  

φ1
'

(a)

Gear tooth

M(a)

M(b)

Figure 12.—Sequence of contact points for aligned gear drive. (a) On gear tooth. (b) For meshing of 
   two pairs of teeth.
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Influence of Misalignment ∆∆∆∆∆γγγγγy of Gear Axes

The gear axes of an ideal gear train are parallel and might be crossed in a misaligned gear train. The investiga-
tion of the influence of crossing angle ∆γy = ±3 min shows

(1) There is only one instantaneous contact point of gear tooth surfaces Σ1 and Σ2 if the gear axes are crossed:
(i) point M(a) if ∆γy is positive, and (ii ) point M(b) if ∆γy is negative. Surfaces Σ1 and Σ2 are separated at the other
theoretical contact point. The backlash between Σ1 and Σ2 measured along the normal is determined as

δ = −( ) •r r nf f f
( ) ( ) ( . . )1 2 3 2 1

The magnitude of δ is 0.008 mm for |∆γy| = 3 min. The instantaneous contact of surfaces at two points can be
restored because of lapping or wearing of the surfaces under the load.

(2) Function ∆ψ2(ψ1) of transmission errors is a piecewise almost linear function with the  frequency of a cycle
of meshing (fig. 13) for the original gear tooth surfaces. This function is interrupted at the transfer point when one
pair of teeth is changed for another one. The jump of transmission errors at the transfer point is the source of noise
and vibrations. The maximum transmission error is ∆ψ2max

 = 20.84 arcsec when ∆γy = ±3 min.
(3) Because of the crossing of gear axes, an angular position error ∆ψ2(0) appears. The value of ∆ψ2(0) is

2.55 arcsec when ∆γy = ±3 min; ∆φ′2(0) is 12.97 arcsec when ∆γy = –3 min.

Influence of Errors ∆∆∆∆∆λλλλλF of Lead Angle

In the case of an ideal gear drive, the directions of skew teeth of the applied rack-cutters are equal and βP = βF.
Consider now that there is an error ∆λF of the installment of the rack-cutter that generates the gear. Then, an error
∆λF of the gear lead angle on the pitch circle will occur. The investigation of the influence of ∆λF = ±3 min shows
the following results:

The instantaneous contact point is M(b) if ∆λF is positive and M(a) if ∆λF is negative. The value of ∆ψ2(0) is
12.97 arcsec when ∆λF = 3 min; ∆ψ2(0) is 2.55 arcsec when ∆λF = –3 min. The maximum transmission error is
∆ψ2max

 = 20.84 arcsec when ∆λF = ±3 min.

3.2.2 Example 2 (Internal Gear Drive)

The same design parameters that were mentioned in Section 3.2.1 are applied for an internal gear drive. By the
computerized simulation of meshing and contact, we have found that the computation results of the internal gear
drive are very close to those of the external gear drive.

(1) Consider that the center distance is changed from E = r2 – r1 to E´ = r2 – r1 + ∆E. The errors of angular
position of gear 2 are (i) ψ2(0) = –29.4476 arcsec when ∆E = 0.03 mm; (ii ) ψ2(0) = 23.6319 arcsec when
∆E = –0.03 mm. The transmission errors are equal to zero.

ψ2

ψ1

(a)

2π/N1

2π/N2

(b)

∆ψ2

ψ1

2π/N1

∆ψ2max

Figure 13.—Transmission function and transmission errors for misaligned gear drive. (a) Transmission function.
   (b) Transmission errors. 
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(2) Because of the influence of misalignment error ∆γy of the shaft angle, transmission errors appear as well.
The maximum transmission error, ∆ψ2max

, is 20.83 arcsec when ∆γy = 3 min and 20.85 arcsec when ∆γy 
= –3 min.

The value of position error, ∆ψ2(0), is 2.49 arcsec when ∆γy 
= –3 min; ∆ψ2(0) is 12.94 arcsec when ∆γy 

= –3 min.
(3) In the condition of error ∆λF of lead angle, the angular position errors of gear are ∆ψ2(0) is 12.86 arcsec for

∆λF = 3 min; and ∆ψ2(0) = 2.43 arcsec for ∆λF = –3 min. The maximum transmission error is ∆ψ2max 
= 20.84 arcsec

when ∆λF = ±3 min.

3.2. Example 3

The function of transmission errors in one circle of meshing is almost linear when the misalignment of crossing
angle ∆γy or error ∆λF of lead angle occurs. The maximum transmission errors for two types of gear drive with the
different gear ratios and different helix angle β have been computed numerically, respectively.

Case 1: Influence of Gear Ratios

The design parameters are as follows:

β α= ° = ° =27 6365 25 5
1

. ,    ,    
.

Pn in

Table I shows the decrease of maximum transmission error ∆ψ2max
with the increase of the gear ratio

for two types of gear drive for misalignment ∆γy = 3 min. Table II shows the maximum transmission error for the
lead angle error ∆λF.

Case 2: Influence of Helix Angle βββββ

The design parameters and misalignment are as follows:

N N Pn y1 230 52 25 5
1

3= = = ° = =,    ,    ,    
.
,    minα γ

in
∆

Table III shows the decrease of maximum transmission error ∆ψ2max
 with the increase of the helix angle β for

two types of gear drives.

TABLE I.—MAXIMUM TRANSMISSION
ERROR WITH CHANGE OF GEAR RATIO

(∆ γ y  = 3 min)
Number
of teeth

of pinion,
N1

Number
of teeth
of gear,

N2

External
gear drive,

arcsec

Internal
gear drive,

arcsec

30 52 41.56 41.41
30 60 36.02 35.91
20 70 30.87 30.82
20 84 25.72 25.69
12 94 22.98 22.96

TABLE II.—MAXIMUM TRANSMISSION
ERROR WITH CHANGE OF GEAR RATIO

(∆ λ F = 3 min)
Number
of teeth

of pinion,
N1

Number
of teeth
of gear,

N2

External
gear drive,

arcsec

Internal
gear drive,

arcsec

30 52 41.55 41.55
30 60 36.01 36.01
20 70 30.86 30.86
20 84 25.72 25.72
12 94 22.98 22.98

TABLE III.—MAXIMUM TRANS-
MISSION ERROR WITH CHANGE

OF HELIX ANGLE β
Helix angle,

β, deg
External

gear drive,
arcsec

Internal gear
drive,

arcsec
15 81.26 80.77
20 59.81 59.52
25 46.67 46.49

27.6365 41.56 41.41
30 37.69 37.56
35 31.07 30.97
40 25.93 25.85
45 21.75 21.69



NASA CR–4771       21

Chapter 4
Generation of Double Circular-Arc Helical
Gears by Grinding Disks
4.1 Computerized Design of the Grinding Disks

For an internal gear drive, the grinding disks are designed for the external pinion and internal gear, respectively.
For the external gear drive, both of the pinion and gear are external gear tooth surfaces. The approach for the disk
design is the same for the cases of external and internal gear drives. Therefore, in this report, the procedure of the
design of the grinding disks is presented only for the internal gear drive.

Gear Tooth Surfaces

The tooth surface and surface normal of the internal gear (external pinion) have been given by equations (2.4.7)
and (2.4.9), respectively. They can be represented by the following equations in two surface parameters (ui, θi):

r ri i i iu i= ( ) =, ,      ( , ) ( . . )θ 1 2 4 1 1

n ni i i iu i= ( ) =, ,      ( , ) ( . . )θ 1 2 4 1 2

Equation of Meshing

The derivation of the equation of meshing is based on the following theorem (ref. 5):

The line of tangency between Σi and tool surface Σt is such an one at which the normals to Σi intersect the rota-
tion axis of the disk-shaped tool.

The common normal to gear tooth surfaces Σi (i = 1,2) and tool surfaces Σt (t = c,d) is represented by the fol-
lowing equations:

X x u

n u

Y y u

n u

Z z u

n u
i i i i

xi i i

i i i i

yi i i

i i i i

zi i i

− ( )
( ) =

− ( )
( ) =

− ( )
( )

,

,

,

,

,

,
( . . )

θ
θ

θ
θ

θ
θ

4 1 3

Here (Xi, Yi, Zi) are the coordinates in Si of the point of intersection of the normal with the zt-axis of the tool.
Two grinding disks Σc and Σd are applied for the external pinion (i = 1) and the internal gear (i = 2), respec-

tively. The grinding disk Σc for the pinion is located above the pitch plane (fig. 14), and the grinding disk Σd for gear
is located under the pitch plane since the gear is an internal one (the pitch plane is tangent to the pinion-gear pitch
cylinders).

We consider the position when Si is coincided with Sf (ψ = 0). The point of intersection of the normal with the
zt-axis can be represented by the equations
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yf

xt

zf

rt

Et

xf

zt

xi

xf

piψ

v(i)

Ot

Of

Oi

Oi

r1

ψ

λ

xf

zf
zt

xt

yi

zt

λ

λ

zf,zi

yf,yt

(a) (b)

(c)

Figure 14.—Coordinate system applied for disk-shape cutter. (a)  Installment of coordinate
   systems Sf and St. (b) Installment of crossing angle. (c) Illustration of screw motion.
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
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cos sin

sin cos
( . . )

λ λ

λ λ

0 0

0 1 0

0 0

0 0 0 1

4 1 4

where t = c while i = 1, t = d while i = 2, λ = 90° – β, and (fig. 14)

E
r r i

r r it
cp

dp
=

+ =( )
− =( )






1

2

1

2
4 1 5

,    

,    
( . . )

for external pinion when

for gear wheninternal

Equations (4.1.3) and (4.1.4) yield

Z x

n

E y

n

Z z

n
t i

xi

t i

yi

t i

zi

sin cos
( . . )

λ λ− = − = −
4 1 6

Using equation (4.1.6), we can eliminate Zt and simplify the obtained equation of meshing by using the follow-
ing relation for a helicoid (ref. 5):

y n x n p ni xi i yi i zi− − = 0 4 1 7( . . )

Here pi is the screw parameter of gear (pinion). The final expression of the equation of meshing is

f u E y p n E n z ni i t i i zi t xi i yi, cot cot ( . . )θ λ λ( ) = − +( ) − + = 0 4 1 8

Determination of the Profile of the Grinding Disk

Figure 15 shows the line of tangency of surfaces Σt and Σi on the cutter surface Σt; M  is the current point of this
line with coordinates (xt ,yt ,zt). The profile of the tool obtained by intersection of plane xt = 0 (axial section) can be
represented by coordinates (yt, zt). The computational procedure is as follows:

Step 1: Use equation of meshing (4.1.8) and consider θi as the input data; then determine the respective value ui.
Step 2: Knowing the couple (ui,θi), determine the coordinates (xt, yt, zt) of the contact line from the matrix equation

r M M rt i i tf fi i i iu u, , ( . . )θ ψ θ( ) = =( ) ( )0 4 1 9

Here (fig. 14)

M Ifi ψ =( ) =0 4 1 10( . . )

Mtf
tE

cos –

cos
( . . )

λ λ

λ λ

0 0

0 1 0

0 0

0 0 0 1

4 1 11

sin

sin

−


















Step 3: Determine ρt using the equation

ρ θt i i t tu x y, ( . . )
.( ) = +( )2 2 0 5

4 1 12
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Figure 15.—Derivation of disk-shaped tool profile. (a) Contact line on tool surface. (b) Coordinates ρt and zt 
   of contact point. (c) Coordinates xt and yt of contact point.
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Step 4: Considering θi as the input parameter and using equations (4.1.9) to (4.1.12), we can determine the tooth
profile by the following equations in the axial section of disk:

y u z z u f ut t i i t t i i i i= ( ) = ( ) ( ) =ρ θ θ θ, ,      , ,      ,  ( . . )0 4 1 13

Figures 16 and 17 show the profiles of grinding disks (axial section) for external pinion and internal gear, respec-
tively.

4.2 Generation of Gear (Pinion) Tooth Surface ΣΣΣΣΣi by Grinding Disk ΣΣΣΣΣt

Surface of Grinding Disk

The surface of grinding disk Σt is a surface of revolution. The axial section is a planar curve α – α that has been
represented in equation (4.1.13). Now it is represented in an auxiliary coordinate system Sa as follows (fig. 18):

x y u z z ua a t a t= = ( ) = ( )0 4 2 1,      ,       ( . . )ρ

where ut is the variable parameter that determines the location of a current point of the planar curve α – α.
The disk surface Σt is performed while coordinate system Sa with the planar curve is rotated about the zt-axis

(fig. 18). Surface Σt is represented in St by the following equation:

r rt t t

t t

t t
a

t t

t t

t
u

u

u

z u
,

cos sin

sin cos

sin

cos
( . . )θ

θ θ
θ θ

ρ θ
ρ θ( ) =

−


















=

( )
( )

( )





















0 0

0 0

0 0 1 0

0 0 0 1 1

4 2 2

The surface normal is represented in St by the following equation:

Figure 16.—Axial profile of grinding disk Σc. Figure 17.—Axial profile of grinding disk Σd.
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ρ ∂
∂

θ
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∂

sin
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The unit normal to the disk surface is

n
N
Nt

t

t
= ( . . )4 2 4

Equation of Meshing

The equation of meshing is represented as

n vt t
ti

t tf u• = ( ) =( ) , ( . . )θ 0 4 2 5

The gear (pinion) performs a screw motion with the angular velocity ω(i) and the translational velocity piω
(i)

(fig. 14(c)).  The relative velocity vt
(ti) is determined by the equation

v v v vt
ti

t
t

t
i

t
i( ) ( ) ( ) ( ) ( . . )= − = − 4 2 6

Since the milling cutter is held at rest, vector vt
(i) can be represented by the following equation:

v r Rt
i

t
i

t t t
i

i t
ip( ) ( ) ( ) ( ) ( . . )= ×( ) + ×( ) +ω ω ω 4 2 7

α

α

Oa

ya

za

(a)

t

θt

za, zt
Oa, Ot

ya

yt xt

xt

(b)

Figure 18.—Disk-shped tool surface generated by planar curve. (a) Tool axial section. 
   (b) Applied coordinate systems.
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Here (fig. 14(a))

R jt t f t tO O E= = − ( . . )4 2 8

where r t and Et are represented by equations (4.2.2) and (4.1.5), respectively. Taking into account that ψ = 0, we
have

ω ψ ω ω
λ

λ
t
i

i
i i( ) ( ) ( )

sin

cos

( . . )= L L ( ) =tf fi = 0

−















0 4 2 9

After transformations, we obtain

vt
ti i

t t i

t

t t i

E y p

x z

E y p

( ) ( )
cos sin

cos sin

sin cos

( . . )= −
− +( ) −

+
− +( ) +

















ω
λ λ

λ λ
λ λ

t 4 2 10

There is a relation for a surface of revolution whose axis of rotation is the zt-axis

x n y nt yt t xt− = 0 4 2 11( . . )

The final expression for the equation of meshing is

f u E p n z n E y p nt t t i xt t yt t t i zt, cos sin sin sin cos ( . . )θ λ λ λ λ λ( ) = +( ) − + +( ) −[ ] = 0 4 2 12

Generated Surface

Tooth surface Σi is represented in Si by the following equations:

r M M ri t t i if ft t t t t tu u f u, , , ,      , ( . . )θ ψ θ θ( ) = ( ) ( ) = 0 4 2 13

where (fig. 14)
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Equations (4.2.13) represent the generated surface in terms of three parameters; (ut, θt, ψi), but (ut, θt) are
related with the equation of meshing (4.2.12).
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Chapter 5
Generation of Gear Drive With Low
Transmission Errors by Application
of Imaginary Rack-Cutters
5.1 Basic Principle

It was shown in Section 3 that errors of alignment cause a discontinuous almost linear function of transmission
errors. The maximal transmission error can reach the value of 40 arcsec that is totally impermissible. Our goals are
to change the shape of the function of transmission errors (to obtain it as a parabolic function) and to reduce the
level of maximal transmission function. These goals, as it will be shown below, will be achieved if function φ2(φ1) is
generated as the sum of the theoretical linear function and a predesigned parabolic function. The predesigned para-
bolic function is able to absorb the almost linear function of transmission errors caused by misalignment. The
predesigned parabolic function of transmission errors is obtained because of the modification of the pinion tooth
surface or the modification of the gear tooth surface in the case of an external gear drive.

The generation of modified pinion tooth surface is based on application of an imaginary rack-cutter ΣP. Unlike
the case discussed in Section 2, it is necessary to provide the modified relation between the displacement s1 of rack-
cutter P and angle φ1 of pinion rotation (fig. 6 or 9) that is represented as follows:

s r
N

N
a1 2

1

2
1 1

2 5 1 1= −






φ φ ( . . )

The derivation of equation (5.1.1) is based on the following considerations:

(1) The relation between the displacement s2 of the rack-cutter F and angle φ2 of gear rotation is still linear and
represented as (figs. 6 or 9)

s r2 2 2 5 1 2= φ ( . . )

(2) Two imaginary rack-cutters with mismatched surfaces Σt (t = F, P) are rigidly connected, so we have

s s1 2 5 1 3= ( . . )

(3) The transmission function of the gear drive will be provided as

φ φ φ2
1

2
1 1

2 5 1 4= −N

N
a ( . . )
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(4) The predesigned parabolic function will be obtained as

∆φ φ2 1
2 5 1 5= −a ( . . )

5.2 Equation of Meshing

The equation of meshing is represented in coordinate system St of rack-cutter P as

n vt t
P

P Pf u• = ( ) =( ) , , ( . . )1
1 0 5 2 1θ φ

Here, nt is represented by equation (2.1.8) and the relative velocity, vt
(P1), is derived for external and internal

gear drives, respectively.

Case 1: External Gear Drive

The external pinion in the external gear drive is a left-hand helical gear. The relative velocity between the rack-
cutter ΣP and pinion Σ1 is as follows:

v v vP
P

P
P

P
( ) ( ) ( ) ( . . )1 1 5 2 2= −

where (fig. 6(a))
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and rP is represented by the equation (2.1.6) and (fig. 6(a))
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The equation of meshing for the left-hand helical pinion is

f u y r u x arP P oP p P oP P P P, , cos cos sin cos sin cos cos sin ( . . )θ φ θ β φ β β θ φ θ β φ θ1 1 2 1 1
22 0 5 2 7( ) = + + −( ) − +( ) =1

Case 2: Internal Gear Drive

The external pinion in the internal gear drive is a right-hand helical gear. The relative velocity between the rack-
cutter ΣP and pinion Σ1 is as follows:

v v vt
P

t
P

t
( ) ( ) ( ) ( . . )1 1 5 2 8= −

where (fig. 9)
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and rP is represented by equation (2.1.6) and (fig. 9)
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The final expression for the equation of meshing is

f u y r u x arP P oP p P oP P P P, , cos cos sin cos sin cos cos sin ( . . )θ φ θ β φ β β θ φ θ β φ θ1 1 2 1 1
22 0 5 2 13( ) = + + −( ) + −( ) =1
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5.3 Modified Pinion Tooth Surface

The equations of pinion tooth surface are represented in the coordinate system S1 as

r M M r1 u u f uP P m mt t P P P P, , , ,      , , ( . . )θ φ θ θ φ1 1 1( ) = ( ) ( ) = 0 5 3 1

Case 1: External Gear Drive

Matrices in equation (5.3.1) are as follows (fig. 6(a)):
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Displacement s1 in equation (5.3.3) is represented by equation (5.1.1). Equations (2.1.6) and (5.3.1) to (5.3.3)
yield
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Case 2: Internal Gear Drive

Matrices in equation (5.3.1) are as follows (fig. 9):
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The displacement s1 in equation (5.3.7) is represented by equation (5.1.1). Equations (2.1.6), (5.3.1), (5.3.6),
and (5.3.7) yield
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5.4 Simulation of Meshing

Equations (3.1.1) to (3.1.16) are applied to determine the bearing contact and the transmission errors. The pin-
ion tooth surface is modified, and the surface vector r1 in equation (3.1.1) is represented by equations (5.3.4) and
(5.3.5) or equations (5.3.8) and (5.3.9). The gear tooth surface is still a conventional one and can be generated by a
grinding disk Σd (see Section 4).

The results of computation confirm that the function of transmission errors is indeed a periodic parabolic func-
tion and a continuous one (fig. 19). The level of maximal transmission error is substantially reduced (see Tables IV
and V).

The numerical results show as well that the influence of errors of alignment is almost the same in external and
internal gear drives.

Parabolic function
of transmission
errors(b)

∆ψ2

ψ1

2π/N1

ψ2

ψ2(ψ1)
ψ1

(a)

Transmission
function for
gears with
modified
geometry

Ideal transmission
function

Figure 19.—Transmission function and function of transmission errors for misaligned gear drive. (a) Trans-
   mission functions for aligned and misaligned gear drives. (b) Transmission errors. 
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TABLE IV.—GEAR DRIVE WITH LARGE GEAR RATIO
Number of teeth of pinion, N 1, .......................................................................................... 12
Number of teeth of gear, N2 ............................................................................................... 94
Normal pressure angle, α n, deg ...................................................................................... 27
Helix angle on the gear (pinion) pitch cylinder, β, deg ..................................... 30
Diametral pitch in normal section, P, in–1 ................................................................. 10

Parabola parameter, α  ................................................................................................. 0.00053
Crossing angle, ∆ γ y , min ................................................................................................... ±3
Maximum transmission error, ∆ψ2, arcsec .................................................................  8
Tooth length, L , mm ............................................................................................................. 37

TABLE V.—GEAR DRIVE WITH SMALL GEAR RATIO
Number of teeth of pinion, N 1, .......................................................................................... 30
Number of teeth of gear, N2 ............................................................................................... 52
Normal pressure angle, α n, deg ...................................................................................... 25
Helix angle on the gear (pinion) pitch cylinder, β, deg ............................... 27.6365
Diametral pitch in normal section, P, in–1 ................................................................. 5

Parabola parameter, α  ................................................................................................. 0.0075
Crossing angle, ∆ γ y , min ................................................................................................... ±3
Maximum transmission error, ∆ψ2, arcsec .................................................................  18
Tooth length, L , mm ............................................................................................................. 85
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Chapter 6
Generation of Modified Pinion by Worms
6.1 Introduction

We have determined in Section 5 the modified pinion tooth surface as the envelope to the family of rack-cutter
surfaces. Our goal is to prove that the modified pinion tooth surface can be generated as well by a grinding or hob-
bing worm. The worm thread surface is the envelope to the family of rack-cutter surfaces ΣP. The worm and pinion
being generated perform related rotations about their axes, and the worm performs, in addition, the translational
motion in the direction of the axis of the pinion that is called the feed motion. The pinion tooth surface Σ1 generated
by a worm can be determined as the envelope to the two-parameter family of worm surfaces, and this can be accom-
plished by application of the following equations:

r M r1 1 6 1 1= =u l l uw w w w w w w w, , , , , ( . . )θ φ φ θ( ) = ( ) = ( )

n v• ( ) =( )w
w w w

w f u l
1,

1=
φ θ φ, , , ( . . )0 6 1 2

n v• ( ) =( )w l
w w wf u l1,

2= , , , ( . . )θ φ 0 6 1 3

Here, (uw, θw) are the surface parameters of worm thread; φw and l are the independent parameters of motion in
the process for generation; v(w1,φw) is the relative velocity determined for the rotational motion of the worm when l
is constant; v(w1,l) is the relative velocity determined for the translational motion of the pinion when φw is constant.
The two equations of meshing (6.1.2) and 6.1.3) are required for a two-parameter family of surfaces.

6.2 Determination of Worm Thread Surface ΣΣΣΣΣw Generated by Rack-Cutter
Surface ΣΣΣΣΣP

The worm surface Σw is determined as the envelope to the family of rack-cutter surfaces ΣP. Figure 20 shows
the installment and the velocity polygon for the case when a right-hand worm is in mesh with the rack-cutter P gen-
erating the right-hand helical pinion. The drawings in figure 20 are represented in plane yt = 0 that is tangent to the
worm pitch cylinder, and the worm is located above the pitch plane. The crossing angle γw formed by axis zd and zm
is determined for the discussed case as

γ β λw w= ° − −( )90 6 2 1( . . )

Figure 21 shows the installment and the velocity polygon for the case when a right-hand worm is in mesh with
the rack-cutter P generating the left-hand helical pinion. The drawings in figure 21 are represented in plane yt = 0
that is tangent to the worm pitch cylinder, and the worm is located under the pitch plane. The crossing angle γw
formed by axis zd and zm is determined for the discussed case as



NASA CR–4771       36

Figure 20.—Installment of worm, rack-cutter P, and velocity polygon for generation
   of right-hand pinion. (a) Installment of worm and rack-cutter. (b) Velocity polygon.
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Figure 21.—Installment of worm, rack-cutter P, and velocity polygon for generation
   of left-hand pinion. (a) Installment of worm and rack-cutter. (b) Velocity polygon.
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γ β λw w= ° − +( )90 6 2 2( . . )

The derivation of the worm thread surface Σw for a right-hand pinion is based on the following considerations:

(1) Movable coordinate systems Sw and St are rigidly connected to the worm and the rack-cutter P, respectively;
fixed coordinate systems Sd and Sm are rigidly connected to the frame of the imaginary generating machine (fig. 22).

(2) The worm and the rack-cutter P perform rotational and translational motions, respectively (fig. 22). The
velocity polygon (fig. 20(b)) provides the following relation between the parameters of motion:

s
r

w
wp

w1 6 2 3
φ

λ
β

= sin
( . . )

cos

(3) The family of rack-cutter surfaces is represented in coordinate system Sw by the equation

r M M rw P P w wd dt t P Pu u= , , , ( . . )θ φ θ( ) = ( ) 6 2 4

N( ) , , ( . . )w wP
P P wf u• ( ) =v( ) = θ φ 0 6 2 5
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Figure 22.—Derivation of worm thread surface as conjugate to rack-
   cutter P.
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where (fig. 22)

Mdt =

−( ) − −( ) − −( )
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−( ) −( ) − −( )
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Equation of Meshing

The equation of meshing is represented in the coordinate system Sm as

n vm
P

m
wP

P P wf u( ) ( ) , , ( . . )• = ( ) =θ φ 0 6 2 8

Here, the unit normal to the rack-cutter surface is represented as

n L n nm
P

mt t
P

P P
( ) ( ) ( . . )= = ( )θ 6 2 9

and the relative velocity is

v v vm
wP

m
w

m
P( ) ( ) ( ) ( . . )= − 6 2 10

where nP is represented by equation (2.1.8) and (fig. 22),
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After transformations, we obtain
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The final expression for the equation of meshing is

f u y x u rP P w oP P oP w P w wP
w

w w, , cot sin cos
sin

sin ( . . )θ φ θ λ λ λ
β

φ β λ( ) = −( ) − − −( ) =
cos

0 6 2 15

Worm Thread Surface

The equations of worm thread surface are represented in the coordinate system Sw as

r M M rw P P w wd dt t P P P P wu u f u, , , ,      , , ( . . )θ φ θ θ φ( ) = ( ) ( ) = 0 6 2 16

The unit normal to the worm thread surface is

n L L nw w P wd dt t Pφ θ θ, ( . . )( ) = ( ) 6 2 17

Matrices in equation (6.2.16) are represented by equations (6.2.6) and (6.2.7). Matrices in equation (6.2.17) are
represented by the following equations:

Ldt =
−( ) − −( )
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0

Equations (6.2.16) and (6.2.15) represent the worm thread surface in three-parameter form. Since equation of
meshing (6.2.15) is linear with respect to parameters uP and φw, we can eliminate one of them and represent the
worm surface by a vector function in terms of two parameters as

r rw w= ( )uw w, ( . . )θ 6 2 20

The worm thread surface generated by rack-cutter surface ΣP that generates the left- or right-hand helical pin-
ions is exactly the same since the rack-cutters for both cases have the same normal section. The worms that generate
the right- and left-hand pinions are located under the pitch plane and above the pitch plane, respectively. It is easy to
verify that a worm with the same surface can be used for generation of the right- and left-hand pinions, and this
allows us to reduce the tool expenses. The normal section of the worm thread surface differs slightly from the nor-
mal section of rack-cutter tooth surface.
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6.3 Generation of Pinion Tooth Surface by Worm

Applied Coordinate Systems

Coordinate systems Sw and Si are rigidly connected to the worm and the right-hand pinion (gear) of internal
gear drive, respectively. Fixed coordinate systems Se and Sn are rigidly connected to the cutting (grinding) machine
(fig. 23).

Relation Between Rotation Angles of Pinion and Worm

The worm and the pinion perform rotational motions. The pinion performs translational motion in the axial
direction as the feed motion, and this requires an additional angle of pinion rotation. The axial displacement l of the
pinion can be represented in two components (fig. 24): (1) along the direction of rack-cutter teeth and (2) in the
direction that is perpendicular to rotation axis zn.

Two cases of derivation of relations between the motion parameters must be considered.

(1) Case 1: The relation between the displacement si of the rack-cutter and angle φi of the pinion (gear) rotation
is linear. Then, the pinion (gear) rotation angle can be represented in two components as
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Figure 23.—Coordinate systems applied for generation
   of right-hand helical gear by worm.
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(2) Case 2: The gear tooth surface is a conventional one, but the pinion tooth surface is modified. Therefore, the
relation between parameters of motion of the worm and angle φ2 of the gear is represented in two components as
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(3) The transmission function with the predesigned parabolic function of transmission errors must be provided.
Thus we have
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(4) Equations (6.3.2) and (6.3.3) yield
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Equation (6.3.4) represents the relation between the parameters of motion (φw, l) and pinion rotation angle φ1
when a predesigned parabolic function of transmission errors is provided.
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Figure 24.—Determation of relation of motion for generation of helical gear
   by worm.
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Pinion Tooth Surface

The pinion tooth surface Σ1 is generated as the envelope to the two-parameter family of worm thread surfaces.
The family of rack-cutter surfaces is represented in S1 as follows:

r M M M r1 1 6 3 5= u l l uw w w n ne ew w w w w, , , , ( . . )θ φ φ φ θ( ) = ( ) ( ) ( ) ( )1

f1 1
1 0 6 3 6= u lw w w
w

, , , ( . . )θ φ ∂
∂φ

( ) = • =n
r

f2 1
1 0 6 3 7= u l
lw w w, , , ( . . )θ φ ∂

∂
( ) = • =n

r

Here (fig. 23)
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Equations of Meshing

Equations 6.3.5) and (6.3.8) to (6.3.10) yield
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Relative velocities can be obtained by the derivations of equation (6.3.11) and are represented as
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The partial derivatives, ∂φ1/∂φw and ∂φ1/∂l, in equations (6.3.13) and (6.3.14) are derived from equation (6.3.4) and
are represented as
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The unit normal to the pinion surface is

n L L L n1 1 6 3 17= ( )n ne ew w w wu , ( . . )θ
where (fig. 23)
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Equations (6.3.13) to (6.3.20) yield equations of meshing (6.3.6) and (6.3.7).
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Chapter 7
Directions for Users of Application of
Computer Programs

There are four programs described in this report. The programs were developed by application of the IBM Main
Frame. The operating system is CMS-9.0.

A subroutine DNEQNF of IMSL software to solve a system of nonlinear equations should be available in the
Math-Library or working environment. The subroutine is not included in the programs. Each program will call the
subroutine DNEQNF several times.

7.1 Program 1: Design of External Gear Drive

7.1.1 Name of the Program

The developed program’s name, EGDUIC.FORTRAN, is formed by six characters. The first three characters,
EGD, are the initial letters of External Gear Drive. The following three characters, UIC, mean that the program is
developed at the University of Illinois at Chicago. The program name is easy to remember before the start of
computations.

The extension name of the program is FORTRAN. It means that the program is written in standard
FORTRAN77 language.

7.1.2 Function of the Program

 This program is developed to design the external helical gear drive of double circular-arc teeth. The program
includes (1) generation of helical pinion and gear of double circular-arc teeth by rack-cutters, respectively; (2) tooth
contact analysis of contact paths, contact ellipse, and parabolic transmission errors; and (3) generation of external
gear drive with low transmission errors by application of imaginary rack-cutters. The equations in the program have
been represented in Sections 3 and 5.

7.1.3 Input Data File 90

Before running the program, you should prepare the following data in data file 90:

Helix angle (fig. 5) β (degree)
Diameteral pitch Pd (1/in.)
Number of gear teeth Ng
Number of pinion teeth Np
Pressure angle (fig. 25) α (degree)
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Error of crossing angle (fig. 11) ∆γy (degree)
Error of center distance ∆C (in.)
Error of intersection angle (fig. 11) ∆γx (degree)
Error of gear leader angle ∆λF (degree)
Coefficient of parabolic parameter a

and profile parameters of a rack-cutter in normal section (fig. 25): ha*, c*, ρa*, ρf*, and ∆e*. Here ρa = ρa*/Pd (or
ρa*m).

7.1.4 Running the Program

The command for running a program in CMS system is as follows:

fortvclg EGDUIC <Enter>

When you run the program, the following information will appear on the screen:

*** WELCOME TO USE EGDUIC ***

END OF READING THE INPUT DATA!

STARTING THE TOOTH CONTACT ANALYSIS!

END OF TCA FOR THE LOWER CONTACT PATH!

END OF TCA FOR THE UPPER CONTACT PATH!

PROGRAM FINISHED!

7.1.5 Output Data Files

When you finish running the program, EGDUIC, you have completed the design for the external helical gear
drive of a double circular arc. All information about the output data is listed in several data files. You can open these
files and look through them. Detailed information about these output files is given in the following sections:

Data File 09:

It includes the input information and pitch radii of gears.

Figure 25.—USSR standard.

α
α

c

c

∆e

Pn = πm

ha

ra

rf

2ha



NASA CR–4771       47

Data File 41:

This is the lower contact path M(b) (fig. 3) represented on the pinion tooth surface. Each line of the data file
represents coordinates (x1, y1, z1) of a contact point of the contact path. The coordinates are represented in pinion
coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 42:

This is the lower contact path M(b) (fig. 3) represented on the gear tooth surface. Each line of the data file
represents coordinates (x2, y2, z2) of a contact point of the contact path. The coordinates are represented in gear coor-
dinate system S2. The applied unit is mm, and the format is 3F22.14.

Data File 43:

This is the upper contact path M(a) (fig. 3) represented on the pinion tooth surface. Each line of the data file
represents coordinates (x1, y1, z1) of a contact point of the contact path. The coordinates are represented in pinion
coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 44:

This is the upper contact path M(a) (fig. 3) represented on the gear tooth surface. Each line of the data file
represents coordinates (x2, y2, z2) of a contact point of the contact path. The coordinates are represented in gear coor-
dinate system S2. The applied unit is mm, and the format is 3F22.14.

Data File 51:

There are two curves in this data file for representation of the cross section of a pinion tooth. Each curve is com-
posed of 30 points. Each line of the data file represents coordinates (x1, y1, z1) of a point of the curve. The coordi-
nates are represented in pinion coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 52:

There are two curves in this data file for representation of the cross section of a gear tooth. Each curve is com-
posed of 30 points. Each line of the data file represents coordinates (x2, y2, z2) of a point of the curve. The coordi-
nates are represented in gear coordinate system S2. The applied unit is mm, and the format is 3F22.14.

Data File 55:

It contains transmission errors of one meshing cycle for upper contact path M(a) (fig. 3). They are obtained by
tooth contact analysis (TCA). The format is as follows:

φ11
 (degree) ∆φ21

 (arcsec)
φ12

 (degree) ∆φ22
 (arcsec)

φ13
  (degree) ∆φ23

 (arcsec)
... ...
φ1i

 (degree) ∆φ2i
 (arcsec)

...  ...

Data File 56:

It contains transmission errors of one meshing cycle for lower contact path M(b) (fig. 3). The format is the same
as that in data file 55.



NASA CR–4771       48

Data File 57:

It contains the values of major and minor axes of upper contact ellipse M(a) corresponding to the contact points
given in data file 43 or 44. The applied unit is mm.

Data File 58:

It contains the values of major and minor axes of lower contact ellipse M(b) corresponding to the contact points
given in data file 41 or 42. The applied unit is mm.

Data File 71:

This file is designated for drawing of the major axes of contact ellipses, M(b), on pinion tooth surface corre-
sponding to the contact points given in data file 41. Each major axis is composed of 3 points. Each line of the data
file represents coordinates (x1, y1, z1) of a point. Each 3-line segment of the data file performs one major axis. The
coordinates are represented in pinion coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 72:

This file is designated for drawing of the major axes of contact ellipses, M(b), on the gear tooth surface corre-
sponding to the contact points given in data file 42. Each major axis is composed of 3 points. Each line of the data
file represents coordinates (x2, y2, z2) of a point. Each 3-line segment of the data file performs one major axis. The
coordinates are represented in gear coordinate system S2. The applied unit is mm, and the format is 3F22.14.

Data File 73:

This file is designated for drawing of the major axes of contact ellipses, M(a), on the pinion tooth surface corre-
sponding to the contact points given in data file 41. Each major axis is composed of 3 points. Each line of the data
file represents coordinates (x1, y1, z1) of a point. Each 3-line segment of the data file performs one major axis.
The coordinates are represented in pinion coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 74:

This file is designated for drawing of the major axes of contact ellipses, M(a), on the gear tooth surface corre-
sponding to the contact points given in data file 42. Each major axis is composed of 3 points. Each line of the data
file represents coordinates (x2, y2, z2) of a point. Each 3-line segment of the data file performs one major axis. The
coordinates are represented in gear coordinate system S2. The applied unit is mm, and the format is 3F22.14.

7.2 Program 2: Design of Internal Gear Drive

7.2.1 Name of the Program

The developed program’s name, IGDUIC.FORTRAN, is formed by six characters. The first three characters,
IGD, are the initial letters of Internal Gear Drive. The following three characters, UIC, mean that the program is
developed at the University of Illinois at Chicago. The program name is easy to remember before the start of
computations.

The extension name of the program is FORTRAN. It means that the program is written in standard
FORTRAN77 language.

7.2.2 Function of the Program

This program is developed to design the internal helical gear drive of double circular-arc teeth. The program
includes (1) generation of helical pinion and gear of double circular-arc teeth by rack-cutters, respectively (the gear
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is an internal one and pinion is an external one) and (2) tooth contact analysis of contact paths and lower transmis-
sion errors. The equations in the program have been represented in Sections 3 and 5.

7.2.3 Input Data File 90

Before running the program, you should prepare the following data in data file 90:

Helix angle β (degree)
Diameteral pitch Pd (1/in.)
Number of gear teeth Ng
Number of pinion teeth Np
Pressure angle α (degree)
Error of crossing angle ∆γy (degree)
Error of center distance ∆C (in.)
Error of intersection angle ∆γx (degree)
Error of gear leader angle ∆λF (degree)
Coefficient of parabolic parameter a

and profile parameters of a rack-cutter in normal section (fig. 25): ha*, c*, ρa*, ρf*, and ∆e*. Here ρa    =  ρa*/Pd (or
ρa*m).

7.2.4 Running the Program

The command for running a program in CMS system is as follows:

fortvclg IGDUIC <Enter>

When you run the program, the following information will appear on the screen:

*** WELCOME TO USE IGDUIC ***

END OF READING THE INPUT DATA!

END OF STARTING POINT FOR UPPER CONTACT PATH!

END OF STARTING POINT FOR LOWER CONTACT PATH!

STARTING THE TOOTH CONTACT ANALYSIS!

END OF TCA!

PROGRAM FINISHED!

7.2.5 Output Data Files

When you finish running the program, IGDUIC, you have completed the design for the internal helical gear
drive of double circular arc. All information regarding the output data is listed in several data files. You can open
these files and look through them. Detailed information about these output files is given in the following sections:

Data File 09:

It includes the input information, pitch radii of gears, and position errors.
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Data File 50:

It contains transmission errors of one meshing cycle for upper contact path M(a) (fig. 3). They are obtained by
TCA. The format is as follows:

φ11
 (degree) ∆φ21

 (arcsec)
φ12

 (degree) ∆φ22
 (arcsec)

φ13
  (degree) ∆φ23

 (arcsec)
... ...
φ1i

 (degree) ∆φ2i
 (arcsec)

...  ...

Data File 60:

It contains transmission errors of one meshing cycle for lower contact path M(b) (fig. 3). The format is the same
as that in data file 50.

Data File 61:

This is the lower contact path M(b) (fig. 3) represented on the pinion tooth surface. Each line of the data file
represents coordinates (x1, y1, z1) of a contact point of the contact path. The coordinates are represented in pinion
coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 62:

This is the lower contact path M(b) (fig. 3) represented on the gear tooth surface. Each line of the data file repre-
sents coordinates (x2, y2, z2) of a contact point of the contact path. The coordinates are represented in gear coordi-
nate system S2. The applied unit is mm, and the format is 3F22.14.

Data File 51:

This is the upper contact path M(a) (fig. 3) represented on the pinion tooth surface. Each line of the data file
represents coordinates (x1, y1, z1) of a contact point of the contact path. The coordinates are represented in pinion
coordinate system S1. The applied unit is mm, and the format is 3F22.14.

Data File 52:

This is the upper contact path M(a) (fig. 3) represented on the gear tooth surface. Each line of the data file repre-
sents coordinates (x2, y2, z2) of a contact point of the contact path. The coordinates are represented in gear coordi-
nate system S2. The applied unit is mm, and the format is 3F22.14.

7.3 Program 3: Design of Grinding Disk

7.3.1 Name of the Program

The developed program’s name, DISKUIC.FORTRAN, is formed by seven characters. The first four characters,
DISK, mean that the program is used to design a grinding DISK. The following three characters, UIC, mean that
program is developed at the University of Illinois at Chicago. The program name is easy to remember before the
start of computations.

The extension name of the program is FORTRAN. That means that the program is written in standard FOR-
TRAN77 language.
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7.3.2 Function of the Program

This program is developed to design a grinding disk for internal or external gear of double circular-arc teeth that
is the same as that generated by a rack-cutter. The program includes (1) generation of helical pinion and gear of
double circular-arc teeth by rack-cutters, respectively, and (2) design of grinding disk based on gear (pinion) tooth
surface. The equations in the program have been represented in Section 4.

7.3.3 Input Data File 91

Before running the program, you should prepare the following data in data file 91:

Helix angle β (degree)
Diameteral pitch Pd (1/in.)
Number of gear (pinion) teeth N
Pressure angle α  (degree)

and profile parameters of a rack-cutter in normal section (fig. 25): ha*, c*, ρa*, ρf*, and ∆e*. Here ρa   =  ρa*/Pd (or
ρa*m).

7.3.4 Running the Program

The command for running a program in CMS system is as follows:

fortvclg DISKUIC <Enter>

When you run the program, the following information will appear on the screen:

*** WELCOME TO USE DISKUIC ***

PITCH RADIUS OF GEAR= 137.84875 (MM)

PLEASE CHOOSE PITCH RADIUS OF GRINDING DISK? (UNIT:MM)

?

Please key in the value and press Enter:

18 <Enter>

Then you will see the following information on the screen:

********** PLEASE CHOOSE: **************

FOR INTERNAL GEAR, PRESS 1 AND <Enter>.

FOR EXTERNAL GEAR, PRESS 2 AND <Enter>.

****************************************

?
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If you want to get the grinding disk for internal gear, please press 1 and Enter:

1 <Enter>

PROGRAM FINISHED!

7.3.5 Output Data Files

When you finish running the program, DISKUIC, you have completed the design of the grinding disk. All infor-
mation regarding the output data is listed in several data files. You can open these files and look through them. De-
tailed information about these output files is given in the following sections:

Data File 09:

It includes the input information and pitch radii of gear and disk.

Data File 52 (or 62):

Data file 52 contains axial profile of grinding disk for external gear, and data file 62 contains axial profile of
grinding disk for internal gear. The format is as follows (fig. 15):

zt1
 (mm) ρt1

 (mm)
zt2

 (mm) ρt2
 (mm)

zt3
 (mm) ρt3

 (mm)
... ...
zti

 (mm) ρti
 (mm)

... ...

7.4 Program 4: Design of Grinding Worm

7.4.1 Name of the Program

The developed program’s name, WORMUIC.FORTRAN, is formed by seven characters. The first four charac-
ters, WORM, mean that the program is to design a grinding WORM. The following three characters, UIC, mean that
program is developed at the University of Illinois at Chicago. The program name is easy to remember before the
start of computations.

The extension name of the program is FORTRAN. It means that the program is written in standard
FORTRAN77 language.

7.4.2 Function of the Program

This program is developed to design a grinding worm that generates the modified pinion tooth surface. The
program includes (1) thread surface of grinding worm which is generated by rack-cutter P and (2) generation of the
modified helical pinion of double circular-arc tooth by the worm. The equations in the program have been repre-
sented in Section 6.

7.4.3 Input Data File 90

Before running the program, you should prepare the following data in data file 90:

Helix angle β (degree)
Diameteral pitch Pd (1/in.)
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Number of gear teeth Ng
Number of pinion teeth Np
Pressure angle α (degree)
Error of crossing angle ∆γy (degree)
Error of center distance ∆C (in.)
Error of intersection angle ∆γx (degree)
Error of gear leader angle ∆λF (degree)
Coefficient of parabolic parameter a

and profile parameters of a rack-cutter in normal section (fig. 25): ha*, c*, ρa*, ρf*, and ∆e*. Here ρa   =  ρa*/Pd (or
ρa*m).

7.4.4 Running the Program

The command for running a program in CMS system is as follows:

fortvclg WORMUIC <Enter>

When you run the program, the following information will appear on the screen:

*** WELCOME TO USE WORMUIC ***

END OF WORM DESIGN!

PROGRAM FINISHED!

7.4.5 Output Data Files

When you finish running the program, WORMUIC, you have completed the design of grinding worm. All
information about the output data is listed in several data files. You can open these files and look through them.
Detailed information about these output files is expressed in the following sections:

Data File 09:

It includes the input information, pitch radii of pinion and worm, and lead angle of worm.

Data File 42:

Data file 42 contains 21 cross section of worm thread in one circle. There are 100 points for each cross section.
Each line of the data file represents three coordinates (xw, yw, zw) of one point and are in worm coordinate system
Sw. The format of data is 3F15.8, and the applied unit is mm.
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